

All-Optical Signal Processing and Optical Regeneration

Govind P. Agrawal

Institute of Optics University of Rochester Rochester, NY 14627

Outline Introduction Major Nonlinear Effects in Optical Fibers Ultrafast Optical Switching Techniques Wavelength Conversion of WDM channels High-Speed Optical Signal Processing All-optical Regeneration Schemes Concluding Remarks

Introduction

- Nonlinear effects inside optical fibers can be used for high-speed processing of optical signals.
- Ultrafast optical switching demonstrated as early as 1989 using a nonlinear fiber-loop mirror.
- The required loop length and input power depend on the nonlinear parameter $[\gamma = 2\pi n_2/(\lambda A_{\rm eff})]$.
- Both can be reduced by employing highly nonlinear fibers with $\gamma>10~{\rm W}^{-1}/{\rm km}.$
- High-speed switching possible because of the non-resonant nature of fiber nonlinearity.
- Useful for a variety of signal-processing applications.

Optical Switching Techniques

- An interferometer (Mach–Zehnder or Sagnac type) is often employed in practice.
- Self-Phase Modulation (SPM) can be used for power-dependent transmission of an input signal.
- Cross-Phase Modulation (XPM) allows better control of switching using suitable control pulses.
- Four-Wave Mixing (FWM) provides parametric gain and creates new wavelengths only over the duration of pump pulses.
- All of them exploited for telecom applications such as wavelength conversion, channel demultiplexing, data-format conversion, and alloptical regeneration.

Nonlinear Fiber-Loop Mirrors

• An example of the Sagnac interferometer.

• Transmissivity depends on the SPM-induced phase shift:

 $T = 1 - 4f(1 - f)\cos^{2}[(f - \frac{1}{2})\gamma P_{0}L].$

f is fraction of power diverted to coupler's cross port.
T = 0 for a 3-dB coupler (loop acts as a perfect mirror).
Power-dependent transmission for f ≠ 0.5.

Soliton Switching

• Experimental demonstration using 300-fs optical pulses (Islam et al., Opt. Lett. 16, 811, 1989).

• 100-m-long Sagnac loop with f = 0.52 was employed.

Back Close

Mach–Zehnder interferometers

• A Mach–Zehnder interferometer (MZI) made using two 3-dB couplers exhibits SPM-induced optical switching.

 Optical field accumulates linear and nonlinear phase shifts in each MZI arm.

Transmission through the bar port of MZI is given by

 $T = \sin^2(\phi_L + \phi_{\rm NL});$ $\phi_{\rm NL} = (\gamma P_0/4)(L_1 - L_2).$

• T changes considerably with input power P_0 .

UNIVERSITY OF ROCHESTER

SPM-Based Switching

• Experimental demonstration around 1990 by several groups (Nayar et al., Opt. Lett. 16, 408, 1991).

- Switching required long fibers and high peak powers.
- Required power is reduced for highly nonlinear fibers (large γ).

XPM-Induced Switching

• A Mach–Zehnder or a Sagnac interferometer can be used.

- Output switched to a different port using a control signal that shifts the phase through XPM.
- If control signal is in the form of a pulse train, a CW signal can be converted into a pulse train.
- Switching time is limited by the walk-off effects.

XPM-Based Wavelength Converters

Data pulses impose XPM-induced phase shift only in one direction.
Walk-off effects result from group-velocity mismatch:

 $\frac{\partial A_1}{\partial z} + \frac{i\beta_{21}}{2}\frac{\partial^2 A_1}{\partial T^2} = i\gamma_1(|A_1|^2 + 2|A_2|^2)A_1$ $\frac{\partial A_2}{\partial z} + d_w\frac{\partial A_2}{\partial T} + \frac{i\beta_{22}}{2}\frac{\partial^2 A_2}{\partial T^2} = i\gamma_2(|A_2|^2 + 2|A_1|^2)A_2.$ • Group-velocity mismatch governed by $d_w = 1/v_{g1} - 1/v_{g2}.$

XPM-Induced Switching Window

• XPM-induced phase shift for Gaussian pulses (FWHM = $1.66T_0$):

$$\phi_1(T) = \phi_{\max} \frac{\sqrt{\pi}T_0}{T_W} \left[\operatorname{erf}\left(\frac{T}{T_0}\right) - \operatorname{erf}\left(\frac{T - T_W}{T_0}\right) \right]$$

• Total time delay $T_W = d_w L$ for a loop of length L.

• (a) $T_0 = 10$ ps, $T_W = 2$ ps and (b) $T_0 = 10$ ps, $T_W = 40$ ps.

Filter-Based Wavelength Converters

This technique does not require an interferometer.
Spectrum of a CW probe broadens because of pump-induced XPM.
An optical filter blocks the pump and transfers data to probe.
Raman amplification improves the device performance.

Experimental Results

J. Yu et al., IEEE Photon. Technol. lett. 13, 833 (2001)

- Wavelength conversion at 80 Gb/s using a 1-km-long fiber with $\gamma = 11 \ {\rm W}^{-1}/{\rm km}$ and a 1.5-nm-bandwidth tunable optical filter.
- Wavelength conversion at 160 Gb/s realized by 2004 [Rau et al., IEEE PTL 16, 2520 (2004)].

 Raman gain can be used to improve the conversion efficiency [Wang et al., IEEE JLT 23, 1105 (2005)].

FWM-Based Wavelength Converters

 Parametric amplification (FWM) of a signal bit stream inside an optical fiber.

• Signal amplification is accompanied by generation of an idler wave at $\omega_i = 2\omega_p - \omega_s$.

• The idler mimics the bit pattern of the signal precisely because FWM occurs only during temporal slices allocated to 1 bits.

• An optical filter blocks the pump and original signal but passes the idler at the new wavelength.

Dual-Pump Wavelength Converters

- Dual-pump configuration can provide nearly uniform parametric gain over a wide bandwidth.
- It also allows polarization-independent operation of the device.
- (a) Output spectrum and (b) conversion efficiency of a dual-pump wavelength converter made with 1-km-long fiber ($\gamma = 18 \text{ W}^{-1}/\text{km}$).

T. Tanemura et al., IEEE PTL 15, 1573 (2003)

FWM-Based Demultiplexing

- FWM is used Often for demultiplexing a single channel from an OTDM bit stream.
- Optical clock (a pulse train at the single-channel bit rate) acts as the pump for FWM.
- Idler pulses are created in only those time slots in which the signal and pump pulses are present simultaneously.
- Optical filter blocks pump and signal pulses, resulting in an output that belongs to a specific channel at the idler wavelength.

FWM-Based Demultiplexing

- FWM was used for demultiplexing as early as 1991.
- By 1996, demultiplexing of a 500-Gb/s OTDM bit stream was demonstrated using clock pulses of 1-ps duration.
- An advantage of using FWM is that the demultiplexed channel is also amplified through FWM inside the same fiber.
- A problem with FWM-based demultiplexers is related to polarization sensitivity of the FWM process itself.
- A polarization-diversity scheme was used as early as 1993 [T. Hasegawa et al., IEEE PTL 5, 947 (1993)].
- A simpler implementation of this scheme was adopted in 2004.

FWM-Based Demultiplexing

Sakamoto et al., IEEE PTL 16, 563 (2004)

- A short piece of polarization-maintaining (PM) fiber attached to the input port of a highly nonlinear fiber.
- Control clock pulses are polarized at 45°.
- PM fiber splits the control and signal pulses into two parts.
- Polarization diversity is realized within the same nonlinear fiber.
- Demultiplexing a 160-Gb/s bit stream into 10-Gb/s channels was realized with <0.5 dB polarization sensitivity.

Back Close

XPM-Based Demultiplexing

XPM can also be used for demultiplexing OTDM channels.

- This scheme is similar to that used for wavelength conversion.
- OTDM signal acts as a probe, while intense clock pulses at λ_2 play the role of the pump.
- Clock pulses shift the spectrum through XPM.
- An optical filter is used to select these pulses.

Back Close

XPM-Based Demultiplexing

Lee et al., Opt. Lett. 30, 1267 (2005)

- A 1-m-long piece of bismuth-oxide fiber was used in a 2005 experiment for demultiplexing a 160-Gb/s bit stream ($\gamma \sim 1100 \text{ W}^{-1}/\text{km}$).
- 3.5-ps control pulses at 10 GHz were amplified to ensure $\gamma P_0 L \approx 10$ even for a 1-m-long fiber.

• Measured switching window was relatively narrow.

All-Optical Regeneration

- Optical signal is degraded considerably during its propagation inside the fiber link.
- Optical amplifiers can be used to manage fiber losses, but they degrade the signal by adding ASE noise and timing jitter.
- An optical regenerator transforms the degraded bit stream into its original form by performing three functions known as Reamplification, Reshaping, and Retiming.
- Such devices are referred to as "3R regenerators."
- Devices that perform only reamplification and reshaping are called 2R regenerators.
- Many nonlinear techniques have been developed that make use of SPM, XPM, and FWM.

SPM-Based 2R Regenerators

Rochette et al., IEEE J. Sel. Top. Quantum Electron. 12, 736 (2006)

- SPM inside a highly nonlinear fiber broadens channel spectrum.
- Optical filter selects a dominant spectral peak.
- Noise in "0 bit" slots is removed by the filter.
- Noise in "1 bit" slots is reduced considerably because of a step-like transfer function.
- Basic idea proposed by Mamyshev in 1998.

Simple Theory

• If we neglect dispersion, only phase is affected by SPM:

 $U(L,t) = U(0,t) \exp[i\gamma P_0 L |U(0,t)|^2].$

• Optical filter acts in the spectral domain:

 $U_f(t) = \mathscr{F}^{-1} \big(H_f(\boldsymbol{\omega} - \boldsymbol{\omega}_f) \mathscr{F}[U(L,t)] \big).$

• Regenerator performance depends mainly on two parameters: $\phi_{\rm NL} \equiv \gamma P_0 L$ and filter offset ω_f .

• Optimum value of ϕ_{NL} is close to $3\pi/2$ because spectrum then exhibits two peaks with a sharp dip at the original wavelength.

• Optimum value of filter offset is around $\omega_f = 3/T_0$ for Gaussian pulses with $P(t) = P_0 \exp(-t^2/T_0^2)$.

Numerical Simulations

Johannisson et al., IEEE PTL 17, 2667 (2005)

- 160-Gb/s bit stream was used with 2-ps-wide Gaussian pulses.
- Peak power of each input pulse varied by up to 10%.
- Noise in "0 bit" slots removed completely by the filter.
- Noise in peak power of 1 bits is reduced from 10% to 4.6% because of a step-like transfer function.

Experimental Results

Her et al., IEEE PTL 16, 200 (2004)

• SPM-based regenerator operating at 40 Gb/s with 8.25-ps pulses.

- Regenerator consists of an EDFA, a 2.5-km-long fiber, and a 1-nm-bandwidth tunable filter (a fiber grating).
- Input power must be optimized in practice.
- Dispersive effects within the fiber cannot be ignored.
- Operation in the normal-dispersion regime is desirable.

Chalcogenide fibers

Fu et al., Opt. Express 13, 7637 (2005)

- A 2.8-m-long chalcogenide fiber used in a 2005 experiment. Large value of γ (1200 W⁻¹/km) reduced the peak power to \sim 1 W.
- Fiber exhibited large normal dispersion ($\beta_2 > 600 \text{ ps}^2/\text{km}$).
- It helped performance by reducing the dispersion length.
- Even two-photon absorption helped in this experiment.

Bismuth-Oxide fibers

Lee et al., IEEE PTL 18, 1296 (2006)

A 1-m-long bismuth-oxide fiber was used in a 2006 experiment.
Fiber exhibited high normal dispersion (β₂ > 330 ps²/km).
Measured power-transfer function agreed well with theory.

FWM-Based 2R Regenerators

Inoue and Mukai, IEEE JLT 20, 969 (2002)

- Gain of any amplifier saturates for large signal powers.
- Because of gain saturation, fluctuations in peak power of a pulse are reduced by a large factor.
- Figure shows improvement realized for a 2.5-km-long fiber pumped with 500-ps pulses (peak power 1.26 W).

Back

Close

FWM-Based 2R Regenerators

Radic et al., IEEE PTL 15, 957 (2003)

- Parametric amplifiers display a nonlinear transfer function.
- Dual pumps create multiple idlers (wavelength multicasting).
- All idlers carry signal information with less noise.
- Useful to regenerate copies of the signal at different wavelengths.

FWM-Based 2R Regenerators

Yamashita et al., IEEE PTL 18, 1054 (2006)

• Performance of FWM-based regenerators can be improved by cascading two parametric amplifiers in series.

• The output of first amplifier is filtered to select an idler.

• Transfer functions for the first and second stages are shown.

• Notice the improved step-like response for this scheme.

Regenerations of DPSK Signals

- DPSK format codes data in phase difference of two neighboring bits.
- Any optical regenerator for DPSK signals should not change this phase difference.
- Combination of soliton effects, saturable absorption, and narrowband filtering can be used to reduce amplitude noise and reshape pulses without affecting their phase.
- FWM can also be used by operating a parametric amplifier in the saturation regime if pump phase does not change much over two bit durations.
- These schemes reduce amplitude noise of RZ pulses (while preserving their phases) but they do not reduce phase noise.

Back Close

Regenerations of DPSK Signals

- Phase noise can be reduced using phase-sensitive amplification inside a Sagnac interferometer.
- A 6-km-long Sagnac loop was employed to provide >13 dB of phase-sensitive gain at a pump power of 100 mW .
- The extent of improvement is evident in constellation diagrams.
- Both the amplitude and phase noise are reduced significantly:
 (a) No noise, (b) with noise, and (c) phase-sensitive amplification.

Croussore et al., Opt. Express 14, 2085 (2006)

Optical 3R Regenerators

M. Matsumoto, IEEE JLT 22, 1472 (2004)

- 3R regenerators perform retiming function and reduce timing jitter.
- An SPM-based 3R regenerator can be built by adding a modulator to the scheme used for 2R regeneration.
- Many other schemes have been proposed in recent years.

 Combination of a dispersion-compensating fiber and a fiber grating is found to be effective in suppressing timing jitter [Striegler et al., IEEE PTL 17, 1310 (2005)].

Back Close

XPM-Based 3R Regenerators

Suzuki et al., IEEE PTL 17, 423 (2005)

• Clock pulses at λ_2 are narrower than signal pulses.

• XPM-induced wavelength shift of clock pulses results in a powertransfer function shown in part (e).

• Results in a wavelength-converted signal with a reverse bit pattern.

DPSK 3R Regenerators

M. Matsumoto, IEEE PTL 19, 273 (2007)

- A Mach–Zehnder interferometer with 1-bit delay is added before an SPM-based 2R regenerator.
- It converts DPSK signal into an OOK signal.
- The output is fed into a second fiber together with an optical clock.
- XPM transfers data to clock pulses, regenerating DPSK signal.

Concluding Remarks

- Optical fibers exhibit a variety of nonlinear effects.
- SPM, XPM, and FWM can be exploited to make ultrafast optical switches.
- These nonlinear effects can be used to make devices such as wavelength converters, channel demultiplexers, and data-format converters.
- Such devices easily operate at bit rates of 100 Gb/s or more.
- New kinds of fibers enhance the nonlinear effects and reduce the required fiber length to below 10 meter.
- Nonlinear effects are also useful for making all-optical regenerators.
- SPM-based 2R and 3R regenerator are likely to find commercial applications.

